Home - Rasfoiesc.com
Educatie Sanatate Inginerie Business Familie Hobby Legal
Doar rabdarea si perseverenta in invatare aduce rezultate bune.stiinta, numere naturale, teoreme, multimi, calcule, ecuatii, sisteme




Biologie Chimie Didactica Fizica Geografie Informatica
Istorie Literatura Matematica Psihologie

Chimie


Index » educatie » Chimie
» Fisiunea si fuziunea nucleara


Fisiunea si fuziunea nucleara


Fisiunea nucleara

Fisiunea se face prin absortia unui neutron de un nucleu greu de uraniu 235, in urma reactiei rezultand cesiu 140, rubidiu 93, 3 neutroni si 200 MeV sau 7.7x10-12 calorii. In cadrul unei reactii de fisiune nucleara este eliberata o cantitate de energie de 10 milioane de ori mai mare decat in cazul unei reactii chimice obisnuite. Energia eliberata de cantitatea de 1 Kg de uraniu 235 este de 18.7 milioane Kwh de caldura. Neutronii eliberati in urma reactiei reactioneaza cu alte nuclee de uraniu, in urma reactiei neutronii inmultindu-se. In urma acestui proces se formeaza o reactie sustinuta sau o reactie in lant care duce la o eliberare continua de energie.

In mod natural uraniul contine 0,71 % uraniu 235, restul fiind uraniu 238. O masa de uraniu natural, oricat de mare, nu poate sustine o reactie in lant din cauza faptului ca numai uraniul 235 produce usor fisiunea. Probabilitatea ca un neutron cu o energie de aproximativ 1 MeV sa produca fisiune este scazuta, dar probabilitatea poate fi crescuta de sute de ori cand neutronul este incetinit printr-o serie de coliziuni elastice cu nuclee usoare ca hidrogen deuteriu sau carbon.



In decembrie 1942 fizicianul italian Enrico Fermi a reusit sa produca prima reactie nucleara in lant la Universitatea din Chicago. Acest lucru a fost reusit printr-o combinatie de uraniu natural si grafit natural, acesta avand rolul de a incetini neutronii.

Energia nucleara se poate obtine prin fuziunea a doua nuclee usoare in unul mai greu. Energia data de stele si de soare provine din reactii nucleare de fuziune din interiorul lor. In prezenta unei presiuni enorme si a unei temperaturi de peste 15 milioane ° C ce este in stele, nucleul de hidrogen se combina ca in ecuatia de mai jos, dand nastere la majoritatea energiei degajata de soare.

Fuziunea Nucleara

Fuziunea nucleara a fost realizata pentru prima data prin anii 1930 prin bombardarea unei tinte continand deuteriu, izotopul hidrogenului cu masa 2, cu deuteroni intr-un ciclotron. Pentru a accelera raza de deuteroni este necesara folosirea unei imense cantitati de energie, marea majoritate transformandu-se in caldura. Din aceasta cauza fuziunea nu este o cale eficienta de a produce energie. In anii 1950 prima demonstratie la scara larga a eliberarii unei cantitati mari de energie in urma fiziunii, necontrolata a fost facuta cu ajutorul armelor termonucleare in SUA, URSS, Marea Britanie si Franta. Aceasta experienta a fost foarte scurta si nu a putut fi folosita la producerea de energie electrica.

In cadrul fisiunii, neutronul, care nu are sarcina electrica poate interactiona usor cu nucleul, in cazul fuziunii, nucleele au amandoua sarcina pozitiva si in mod natural nu pot interactiona pentru ca se resping conform legii lui Coulomb, lucru care trebuie contracarat. Acest lucru se poate face cand temperatura gazului este suficient de mare 50-100 milioane ° C.

Energia apare la inceput ca energie cinetica a lui heliu 4, dar este transformata repede in caldura. Daca densitatea de gaz este sufucienta, la aceste temperaturi trebuie sa fie 10-5 atm, aproape vid, energia nucleului de heliu 4 poate fi transferata gazului de hidrogen, mentinandu-se temperatura inalta si realizandu-se o reactie in lant.

Problema de baza in atingerea fuziunii nucleare este caldura gazului si existenta unei cantitati suficiente de nuclee pentru un timp indelungat pentru a permite eliberarea unei energii suficiente pentru a incalzi gazul. O alta problema este captarea energiei si convertirea in energie electrica. La o temperatura de 100.000 °C toti atomii de hidrogen sunt ionizati, gazul fiind compus din nuclee incarcate pozitiv si electroni liberi incarcati negativ, stare numita plasma.

Plasma calda pentru fuziune nu se poate obtine din materiale obisnuite. Plasma s-ar raci foarte repede, si peretii vasului ar fi distrusi de caldura. Dar plasma poate fi controlata cu ajutorul magnetilor urmand liniile de camp magnetic,stand departe de pereti.

In 1980 a fost realizat un astfel de dispozitiv, in timpul fuziunii temperatura fiind de 3 ori mai mare ca a soarelui.

O alta cale posibila de urmat este de a produce fiziune din deuteriu si tritiu pus intr-o sfera mica de sticla care sa fie bombardata din mai multe locuri cu un laser pulsand sau cu raze ionice grele. Acest procedeu produce o implozie a sferei de sticla, producandu-se o reactie termonucleara care aprinde carburantul.

Unele progrese sau obtinut in 1991 cand o cantitate importanta de energie (1,7 milioane W) a fost produsa cu ajutorul reactie de fuziune controlata in Laboratoarele JET din Finlanda. In 1993 cercetatorii de la Universitatea din Princeton au obtinut 5.6 milioane W. In ambele cazuri s-a consumat mai multa energie decat s-a creat.

Daca reactia de fuziune devine practica ,ofera o serie de avantaje o sursa de deuteriu aproape infinita din oceane, imposibilitatea de a produce accidente din cauza cantitatii mici de carburant, reziduriile nucleare sunt mai putin radioactive si mai simplu de manipulat.

Reactorul Nuclear

Transmutatiile radioactive naturale precum si reactii nucleare produse artificial, prin reactii de fisiune nucleara au ca rezultat, degajarea unor mari cantitati de energie pe unitatea de masa a substantei cu care reactioneaza.

Posibilitatea utilizarii energiei nucleare s-a realizat o data cu descoperirea fisiunii nucleare si procedeul obtinerii reactiei in lant. Reactia nucleara continua si reglabila se realizeaza in reactori nucleari (pilele atomice).

In reactoare se utilizeaza uraniu 23592U. Conditia necesara pentru decurgerea reactiei nucleare in lant este masa suficienta de uraniu din reactor.

Neutronii care se formeaza in procesul reactiei nucleare, pot iesi prin suprafata uraniului afara si participa la dezvoltarea reactiei in lant.

Pentru ca fractiunea de acesti neutroni sa fie mica, in comparatie cu volumul lui, trebuie ca masa uraniului din reactor sa fie suficient de mare si sa depaseasca o anumita masa critica. Pe de alta parte, pentru ca reactia sa nu decurga prea violent, trebuie reglat numarul de neutroni, nepermitandu-i sa creasca prea mult. Aceasta se realizeaza printr-o absorbtie a neutronilor termici excedentari cu ajutorul unor elemente ca borul (B) si cadmiul (Cd).

Un reactor nuclear este alcatuit din:

- spatiul in care sunt asezate blocurile de uraniu (23592U) si de moderatori (de obicei, grafit) A;

- reflectorul de neutroni care au parasit spatiul in care se desfasoara reactia B;

- strat de protectie care protejeaza spatiul inconjurator de actiunea radiatiilor emise in timpul desfasurarii reactiei nucleare C;

- bare de cadmiu (Cd) sau bor (B) D si E care sunt introduse in volumul A si incetinesc reactia de fisiune nucleara. Introducerea barelor se face in mod automat, imediat ce puterea reactiei nucleare depaseste o anumita limita. Apa este folosita pentru racirea blocurilor de uraniu, iar aburul rezultat din fierberea apei pune in miscare turbina unui generator electric care produce energie electrica.

Aceasta ar fi un aspect al obtinerii energiei in reactoarele nucleare, dar cel mai trist aspect il constituie problema deseurilor nucleare radioactive si stocarea lor.





Politica de confidentialitate





Copyright © 2024 - Toate drepturile rezervate